A randomized-controlled trial of ischemia-free liver transplantation for end-stage liver disease

J Hepatol. 2023 Aug;79(2):394-402 doi: 10.1016/j.jhep.2023.04.010.

Ischemia-reperfusion injury (IRI) has thus far been considered as an inevitable component of organ transplantation, compromising outcomes, and limiting organ availability. Ischemia-free organ transplantation is a novel approach designed to avoid IRI, with the potential to improve outcomes.


In this randomized-controlled clinical trial, recipients of livers from donors after brain death were randomly assigned to receive either an ischemia-free or a 'conventional' transplant. The primary endpoint was the incidence of early allograft dysfunction. Secondary endpoints included complications related to graft IRI.


Out of 68 randomized patients, 65 underwent transplants and were included in the analysis. 32 patients received ischemia-free liver transplantation (IFLT), and 33 received conventional liver transplantation (CLT). Early allograft dysfunction occurred in two recipients (6%) randomized to IFLT and in eight (24%) randomized to CLT (difference -18%; 95% CI -35% to -1%; p = 0.044). Post-reperfusion syndrome occurred in three recipients (9%) randomized to IFLT and in 21 (64%) randomized to CLT (difference -54%; 95% CI -74% to -35%; p <0.001). Non-anastomotic biliary strictures diagnosed with protocol magnetic resonance cholangiopancreatography at 12 months were observed in two recipients (8%) randomized to IFLT and in nine (36%) randomized to CLT (difference, -28%; 95% CI -50% to -7%; p = 0.014). The comprehensive complication index at 1 year after transplantation was 30.48 (95% CI 23.25-37.71) in the IFLT group vs. 42.14 (95% CI 35.01-49.26) in the CLT group (difference -11.66; 95% CI -21.81 to -1.51; p = 0.025).


Among patients with end-stage liver disease, IFLT significantly reduced complications related to IRI compared to a conventional approach.


chictr.org. ChiCTR1900021158.


Ischemia-reperfusion injury has thus far been considered as an inevitable event in organ transplantation, compromising outcomes and limiting organ availability. Ischemia-free liver transplantation is a novel approach of transplanting donor livers without interruption of blood supply. We showed that in patients with end-stage liver disease, ischemia-free liver transplantation, compared with a conventional approach, led to reduced complications related to ischemia-reperfusion injury in this randomized trial. This new approach is expected to change the current practice in organ transplantation, improving transplant outcomes, increasing organ utilization, while providing a clinical model to delineate the impact of organ injury on alloimmunity.

CET Conclusion
Reviewer: Mr John Fallon, Centre for Evidence in Transplantation, Nuffield Department of Surgical Sciences University of Oxford
Conclusion: This small unblinded randomised trial was conducted in a single high volume transplant centre in China by the group who have been pioneering the ischaemia-free liver transplant technique since its fist publication in 2018. Images and videos of their technique have been included in their 3 publications on their reports and protocols. The IFLT cohort was n=32 and the CLT n=33, of these 2 (6%) in the IFLT experience EAD and 8 (24%) in the CLT (p=0.044) which was the primary endpoint. In some of the secondary endpoints they found significant improvement with IFLT: peak ALT and ASK at 7 days, total bilirubin, post-op lactate positive perfusate microbial culture and non-anastomotic strictures at 12 months. When scrutinising these strictures, there were 2 in IFLT (one mild and one moderate) and 9 in CLT (five mild and four moderate) none of which required intervention. The marked reduction in post-reperfusion syndrome is important 3 (9%) in IFLT and 21 (64%) in CLT given the risk of post-reperfusion cardiac arrest. They found no significant differences in primary non-function, over-all hospital stay, anastomotic stenosis (though the rate was higher in IFLT) and, graft and patient survival. They present an impressive success given the complexity of the procedure, however this is its key limitation. Despite the improvement in EAD, strictures and post-reperfusion syndrome there was no measurable benefit in patient or graft survival within the first year and none of the strictures require intervention. It was done in a set of low risk DBD donors, a cohort in which similar benefits have been seen with NMP alone. There are technical limitations, it was performed with a liver assist device which is not transportable, thus donor and recipient must be in the same location. The technique is of interest and a great technical achievement, but a study of larger numbers with a wider range of DBD donors and longer-term follow-up is required.
Expert Review
Reviewer: Mr John O'Callaghan, Centre for Evidence in Transplantation, Nuffield Department of Surgical Sciences University of Oxford
Review: This is a very interesting randomised controlled trial in liver transplantation that has the potential to significantly change practice and improve transplant outcomes. 68 liver transplant recipients from donation after brain death were randomised to standard treatment or for an “Ischemia-Free Liver Transplant” (IFLT). The trial was conducted at a single hospital in China. The study was adequately randomised, but the clinical team could not be blinded to the intervention, understandably. For the intervention group, the Liver Assist device (Organ assist, The Netherlands) was used to establish in situ normothermic perfusion. The liver was then procured and moved to the reservoir of the Liver Assist for ex situ normothermic machine perfusion and moved to the recipient locality for transplant. For the liver implantation to the recipient, the anastomoses of the inferior vena cava, portal vein, and hepatic artery were performed under continuous in situ normothermic machine perfusion. Machine perfusion was discontinued after the donor liver had been revascularized. Then the biliary tract was reconstructed. There was therefore zero cold ischemic time for the IFLT group. Mean cold ischaemic time in the standard care group was approximately 7 hours, and mean normothermic perfusion time in the IFLT group was approximately 7 hours. The primary outcome was Early Allograft Dysfunction (EAD) and this was significantly reduced by IFLT (6% versus 24%), as were peak ALT, AST and bilirubin levels. Post-reperfusion syndrome was dramatically reduced, from 64% to 9%. Non-anastomotic biliary strictures were also significantly reduced (8% versus 36%), although this was recorded as seen on protocol MRCP. This clinical trial has shown a dramatic reduction in the ischemia reperfusion injury of transplant livers through the novel use of technology to remove the cold ischemic phase of the organ preservation period. The donor liver is kept warm and perfused all through the process of procurement from the donor body, preservation outside the body, and during the implant into the recipient up until the moment of reperfusion with the recipient’s blood. The technique clearly improved early transplant function. The reduction in non-anastomotic strictures was largely asymptomatic, so it remains to be seen if this technique can significantly reduce the risk of symptomatic strictures in higher risk livers.
Methodological quality
Jadad score 3
Allocation concealment YES
Study Details
Aims: To compare outcomes in the novel technique of ischaemia-free liver transplantation (IFLT) to conventional liver transplantation (CLT).
Interventions: The technique being tested is IFLT compared with CLT. IFLT is a complex technique in which during DBD donation the perfusion cannulas of a Liver Assist can be placed in the donor liver prior to cessation of donor circulation. The arterial canula placed via the splenic artery, portal vein via and vein graft and the outflow canula into the infra-hepatic cava. The perfusion can then seamlessly be transferred from donor circulation to NMP, the liver is then procured and continued NMP until implantation. The supra-hepatic caval (piggyback), portal vein and hepatic arterial anastomoses are then performed in the recipient while NMP continues, and once completed the NMP cannulas are removed, and hepatic perfusion transferred from NMP to recipient without interruption of perfusion.
Participants: 65 adult whole liver-only transplant recipients.
Outcomes: The primary endpoint was early allograft dysfunction (EAD) within 7 days as defined by the Olthoff criteria. The secondary endpoints included primary non-function, post-reperfusion syndrome, biliary complications, post-reperfusion lactate, post-transplant LFTs, patient and graft survival at 1,6, & 12 months, ITU stay and overall hospital stay.
Follow Up: 12 months
Funding: Non-industry funding
Publication type: Randomized Controlled Trial, Randomised Controlled Trial
Trial registration: ChiCTR1900021158
Organ: Liver
Language: English
Author email: gdtrc@163.com
MeSH terms: Humans; Liver Transplantation; End Stage Liver Disease; Ischemia; Liver; Reperfusion Injury; Perfusion; Organ Preservation