599 results
Filters
Sort By
Results Per Page
Filters
599 results
Download the following citations:
Email the following citations:
Print the following citations:
  • Pradat P
  • Pantel S
  • Maynard M
  • Lalande L
  • Thevenon S
  • et al.
Trials. 2023 Jun 6;24(1):379 doi: 10.1186/s13063-023-07402-0.
CET Conclusion
Reviewer: Mr John O'Callaghan, Centre for Evidence in Transplantation, Nuffield Department of Surgical Sciences University of Oxford
Conclusion: This paper documents in detail the study protocol for a trial of end-ischaemic hypothermic oxygenated machine perfusion (HOPE) in extended criteria donor livers. There is a pragmatic element to the design, as livers will be preserved by static cold storage and then in the study group will receive 1-4 hours of HOPE. By concentrating on ECD livers, the study is more likely to find a significant impact on the primary outcome of early allograft dysfunction. The study is powered (80%) for a reduction in early allograft dysfunction from 30% to 15%, accounting for 10% dropout rate. Randomization will occur after allocation of the liver graft to a recipient. Allocation concealment is maintained, but there is no blinding of the surgical team nor patient. Data analysts will be blinded to group allocation. Interestingly the trial commenced in 2019 and is ongoing. This paper is published in order to “prevent biased analysis of trial outcomes and improve transparency of the trial results”. The study is funded by the French Ministry of Health and is being conducted at 8 transplant centres in France.
Aims: This is a protocol for a randomised controlled trial that aims to determine the efficacy of hypothermic oxygenated machine perfusion (HOPE) when used prior to transplantation of extended criteria donor (ECD) liver grafts obtained from brain-dead donors, for reduction of early allograft dysfunction (EAD) post-operation in comparison to simple cold static storage.
Interventions: ECD liver grafts will be randomly assigned to receive either HOPE or static cold storage.
Participants: Adult patients (≥ 18 years) transplanted with a liver graft harvested from a brain-dead ECD.
Outcomes: The primary outcomes are early allograft dysfunction (EAD) and primary non-function (PNF). The secondary outcomes include quality of conservation; ischemia–reperfusion injuries, intra-operative events; 90-day morbidity and mortality; duration of intermediate care unit stay and total hospital stay; actuarial graft and patient’s survival rates; and costs of liver transplantation with ECD grafts using HOPE or not and incremental cost-effectiveness ratio.
Follow Up: 12 months (± 30 days) following transplantation (36 months maximum).
BACKGROUND:

Given the scarce donor supply, an increasing number of so-called marginal or extended criteria donor (ECD) organs are used for liver transplantation. These ECD liver grafts are however known to be associated with a higher rate of early allograft dysfunction and primary non-function because of a greater vulnerability to ischemia-reperfusion injury. The end-ischemic hypothermic oxygenated machine perfusion (HOPE) technique may improve outcomes of liver transplantation with ECD grafts by decreasing reperfusion injury.

METHODS:

HOPExt trial is a comparative open-label, multicenter, national, prospective, randomized, controlled study, in two parallel groups, using static cold storage, the gold standard procedure, as control. The trial will enroll adult patients on the transplant waiting list for liver failure or liver cirrhosis and/or liver malignancy requiring liver transplantation and receiving an ECD liver graft from a brain-dead donor. In the experimental group, ECD liver grafts will first undergo a classical static cold (4 °C) storage followed by a hypothermic oxygenated perfusion (HOPE) for a period of 1 to 4 h. The control group will consist of the classic static cold storage which is the gold standard procedure in liver transplantation. The primary objective of this trial is to study the efficacy of HOPE used before transplantation of ECD liver grafts from brain-dead donors in reducing postoperative early allograft dysfunction within the first 7 postoperative days compared to simple cold static storage.

DISCUSSION:

We present in this protocol all study procedures in regard to the achievement of the HOPExt trial, to prevent biased analysis of trial outcomes and improve the transparency of the trial results. Enrollment of patients in the HOPExt trial has started on September 10, 2019, and is ongoing.

TRIAL REGISTRATION:

ClinicalTrials.gov NCT03929523. Registered on April 29, 2019, before the start of inclusion.

  • Ghoneima AS
  • Sousa Da Silva RX
  • Gosteli MA
  • Barlow AD
  • Kron P
J Clin Med. 2023 Jun 6;12(12) doi: 10.3390/jcm12123871.

The high demand for organs in kidney transplantation and the expansion of the donor pool have led to the widespread implementation of machine perfusion technologies. In this study, we aim to provide an up-to-date systematic review of the developments in this expanding field over the past 10 years, with the aim of answering the question: "which perfusion technique is the most promising technique in kidney transplantation?" A systematic review of the literature related to machine perfusion in kidney transplantation was performed. The primary outcome measure was delayed graft function (DGF), and secondary outcomes included rates of rejection, graft survival, and patient survival rates after 1 year. Based on the available data, a meta-analysis was performed. The results were compared with data from static cold storage, which is still the standard of care in many centers worldwide. A total of 56 studies conducted in humans were included, and 43 studies reported outcomes of hypothermic machine perfusion (HMP), with a DGF rate of 26.4%. A meta-analysis of 16 studies showed significantly lower DGF rates in the HMP group compared to those of static cold storage (SCS). Five studies reported outcomes of hypothermic machine perfusion + O2, with an overall DGF rate of 29.7%. Two studies explored normothermic machine perfusion (NMP). These were pilot studies, designed to assess the feasibility of this perfusion approach in the clinical setting. Six studies reported outcomes of normothermic regional perfusion (NRP). The overall incidence of DGF was 71.5%, as it was primarily used in uncontrolled DCD (Maastricht category I-II). Three studies comparing NRP to in situ cold perfusion showed a significantly lower rate of DGF with NRP. The systematic review and meta-analysis provide evidence that dynamic preservation strategies can improve outcomes following kidney transplantation. More recent approaches such as normothermic machine perfusion and hypothermic machine perfusion + O2 do show promising results but need further results from the clinical setting. This study shows that the implementation of perfusion strategies could play an important role in safely expanding the donor pool.

  • Hosgood SA
  • Callaghan CJ
  • Wilson CH
  • Smith L
  • Mullings J
  • et al.
Nat Med. 2023 Jun;29(6):1511-1519 doi: 10.1038/s41591-023-02376-7.
CET Conclusion
Reviewer: Mr Simon Knight, Centre for Evidence in Transplantation, Nuffield Department of Surgical Sciences University of Oxford
Conclusion: This multicentre study randomised kidneys from controlled DCD donors to static cold storage (SCS) or to normothermic machine perfusion (NMP) with oxygenated blood for one hour prior to transplant. 338 kidneys were randomised. Primary endpoint was delayed graft function (DGF), defined by requirement for dialysis during the first 7 days post-transplant. Although NMP was feasible and safe, no difference in clinical endpoints were seen. The study is well-designed and reported and would appear to confirm that a short period of NMP prior to transplant does not confer clinical benefit. It is worth noting that the choice of primary endpoint can lead to challenges, as patients that are transplanted pre-emptively are less likely to reach the primary endpoint (DGF determined by dialysis need). As there was an imbalance between the proportions of pre-emptive patients in the control arm and study arm (22% versus 11%) this may impact the results. However, all secondary measures of graft function including functional DGF, DGF duration and creatinine reduction ratio were equivalent between the arms.
Aims: The aim of this study was to compare the posttransplant outcomes of conventional static cold storage (SCS) alone or SCS combined with 1 hour of normothermic machine perfusion (NMP) in donation after circulatory death (DCD) kidney transplant patients.
Interventions: Participants were randomised to either SCS plus 1-hour NMP or SCS alone.
Participants: 338 adult (≥18 years) kidney transplant patients that received a kidney from adult (≥ 18 years) DCD donors.
Outcomes: The primary endpoint was delayed graft function (DGF). The secondary endpoints included the incidence of primary nonfunction (PNF), duration of DGF, functional DGF, duration of hospital stay, estimated glomerular filtration rate (eGFR) or serum creatinine, and patient and allograft survival.
Follow Up: 12 months posttransplantation.

Kidney transplantation is the optimal treatment for end-stage renal disease, but it is still severely limited by a lack of suitable organ donors. Kidneys from donation after circulatory death (DCD) donors have been used to increase transplant rates, but these organs are susceptible to cold ischemic injury in the storage period before transplantation, the clinical consequence of which is high rates of delayed graft function (DGF). Normothermic machine perfusion (NMP) is an emerging technique that circulates a warmed, oxygenated red-cell-based perfusate through the kidney to maintain near-physiological conditions. We conducted a randomized controlled trial to compare the outcome of DCD kidney transplants after conventional static cold storage (SCS) alone or SCS plus 1-h NMP. A total of 338 kidneys were randomly allocated to SCS (n = 168) or NMP (n = 170), and 277 kidneys were included in the final intention-to-treat analysis. The primary endpoint was DGF, defined as the requirement for dialysis in the first 7 d after transplant. The rate of DGF was 82 of 135 (60.7%) in NMP kidneys versus 83 of 142 (58.5%) in SCS kidneys (adjusted odds ratio (95% confidence interval) 1.13 (0.69-1.84); P = 0.624). NMP was not associated with any increase in transplant thrombosis, infectious complications or any other adverse events. A 1-h period of NMP at the end of SCS did not reduce the rate of DGF in DCD kidneys. NMP was demonstrated to be feasible, safe and suitable for clinical application. Trial registration number: ISRCTN15821205 .

  • Risbey CWG
  • Pulitano C
J Clin Med. 2023 May 28;12(11) doi: 10.3390/jcm12113718.
BACKGROUND:

Liver transplantation is a lifesaving procedure for patients with end-stage liver disease (ESLD). However, many patients never receive a transplant due to insufficient donor supply. Historically, organs have been preserved using static cold storage (SCS). However, recently, ex vivo normothermic machine perfusion (NMP) has emerged as an alternative technique. This paper aims to investigate the clinical progress of NMP in humans.

METHODS:

Papers evaluating the clinical outcomes of NMP for liver transplantation in humans were included. Lab-based studies, case reports, and papers utilizing animal models were excluded. Literature searches of MEDLINE and SCOPUS were conducted. The revised Cochrane risk-of-bias tool for randomised trials (RoB 2) and the risk of bias in nonrandomised studies for interventions (ROBINS-I) tools were used. Due to the heterogeneity of the included papers, a meta-analysis was unable to be completed.

RESULTS:

In total, 606 records were identified, with 25 meeting the inclusion criteria; 16 papers evaluated early allograft dysfunction (EAD) with some evidence for lower rates using NMP compared to SCS; 19 papers evaluated patient or graft survival, with no evidence to suggest superior outcomes with either NMP or SCS; 10 papers evaluated utilization of marginal and donor after circulatory death (DCD) grafts, with good evidence to suggest NMP is superior to SCS.

CONCLUSIONS:

There is good evidence to suggest that NMP is safe and that it likely affords clinical advantages to SCS. The weight of evidence supporting NMP is growing, and this review found the strongest evidence in support of NMP to be its capacity to increase the utilization rates of marginal and DCD allografts.

  • Le Meur Y
  • Nowak E
  • Barrou B
  • Thierry A
  • Badet L
  • et al.
Trials. 2023 May 1;24(1):302 doi: 10.1186/s13063-023-07302-3.
BACKGROUND:

Preventing ischemia‒reperfusion injury (IRI) is a major issue in kidney transplantation, particularly for transplant recipients receiving a kidney from extended criteria donors (ECD). The main consequence of IRI is delayed graft function (DGF). Hypoxia is one of the key factors in IRI, suggesting that the use of an oxygen carrier as an additive to preservation solution may be useful. In the OxyOp trial, we showed that the organs preserved using the oxygen carrier HEMO2life® displayed significantly less DGF. In the OxyOp2 trial, we aim to definitively test and quantify the efficacy of HEMO2life® for organ preservation in a large population of kidney grafts.

METHODS:

OxyOp2 is a prospective, multicenter, randomized, comparative, single-blinded, parallel-group study versus standard of care in renal transplantation. After the selection of a suitable donor according to the inclusion/exclusion criteria, both kidneys will be used in the study. Depending on the characteristics of the donor, both kidneys will be preserved either in static cold storage (standard donors) or on machine perfusion (for ECD and deceased-after-cardiac-death donors (DCD)). The kidneys resulting from one donor will be randomized: one to the standard-of-care arm (organ preserved in preservation solution routinely used according to the local practice) and the other to the active treatment arm (HEMO2life® on top of routinely used preservation solution). HEMO2life® will be used for ex vivo graft preservation at a dose of 1 g/l preservation solution. The primary outcome is the occurrence of DGF, defined as the need for renal replacement therapy during the first week after transplantation.

DISCUSSION:

The use of HEMO2life® in preservation solutions is a novel approach allowing, for the first time, the delivery of oxygen to organs. Improving graft survival by limiting ischemic lesions is a major public-health goal in the field of organ transplantation.

TRIAL REGISTRATION:

ClinicalTrials.gov, ID: NCT04181710 . registered on November 29, 2019.

  • Schlegel A
  • Mueller M
  • Muller X
  • Eden J
  • Panconesi R
  • et al.
J Hepatol. 2023 Apr;78(4):783-793 doi: 10.1016/j.jhep.2022.12.030.
CET Conclusion
Reviewer: Mr Keno Mentor, Centre for Evidence in Transplantation, Nuffield Department of Surgical Sciences University of Oxford
Conclusion: Hypothermic oxygenated perfusion (HOPE) liver perfusion has shown promising results in preclinical studies but has yet to demonstrate consistent benefit for clinically relevant endpoints. This multicentre RCT compared the complication rate following DBD liver transplant (LT) between conventional cold storage versus treatment with HOPE prior to implantation. The study showed no significant difference in the rate of Clavien score > 3 between the two groups. A post hoc analysis compared the rate of liver-related graft loss, but the rationale for this analysis is not clear and the difference reported was not statistically significant. This study thus did not demonstrate any benefit to utilising HOPE in DBD liver transplantation.
Aims: This study aimed to investigate the role of hypothermic oxygenated perfusion (HOPE) on morbidity within 1 year following liver transplantation.
Interventions: Livers were randomised to either conventionally cold stored (control group), or cold stored followed by 1-2 hours HOPE treatment before implantation (HOPE group).
Participants: Patients listed for liver only transplantation (18 years of age).
Outcomes: The primary outcome was the occurrence of one or more major post-transplant complication. Secondary outcomes were comprehensive complication index (CCI), graft survival, patient survival, laboratory parameters, duration of hospital and intensive care unit stay, and biliary complications.
Follow Up: 12 months
BACKGROUND & AIMS:

Machine perfusion is a novel method intended to optimize livers before transplantation. However, its effect on morbidity within a 1-year period after transplantation has remained unclear.

METHODS:

In this multicenter controlled trial, we randomly assigned livers donated after brain death (DBD) for liver transplantation (LT). Livers were either conventionally cold stored (control group), or cold stored and subsequently treated by 1-2 h hypothermic oxygenated perfusion (HOPE) before implantation (HOPE group). The primary endpoint was the occurrence of at least one post-transplant complication per patient, graded by the Clavien score of ≥III, within 1-year after LT. The comprehensive complication index (CCI), laboratory parameters, as well as duration of hospital and intensive care unit stay, graft survival, patient survival, and biliary complications served as secondary endpoints.

RESULTS:

Between April 2015 and August 2019, we randomized 177 livers, resulting in 170 liver transplantations (85 in the HOPE group and 85 in the control group). The number of patients with at least one Clavien ≥III complication was 46/85 (54.1%) in the control group and 44/85 (51.8%) in the HOPE group (odds ratio 0.91; 95% CI 0.50-1.66; p = 0.76). Secondary endpoints were also not significantly different between groups. A post hoc analysis revealed that liver-related Clavien ≥IIIb complications occurred less frequently in the HOPE group compared to the control group (risk ratio 0.26; 95% CI 0.07-0.77; p = 0.027). Likewise, graft failure due to liver-related complications did not occur in the HOPE group, but occurred in 7% (6 of 85) of the control group (log-rank test, p = 0.004, Gray test, p = 0.015).

CONCLUSIONS:

HOPE after cold storage of DBD livers resulted in similar proportions of patients with at least one Clavien ≥III complication compared to controls. Exploratory findings suggest that HOPE decreases the risk of severe liver graft-related events.

IMPACT AND IMPLICATIONS:

This randomized controlled phase III trial is the first to investigate the impact of hypothermic oxygenated perfusion (HOPE) on cumulative complications within a 12-month period after liver transplantation. Compared to conventional cold storage, HOPE did not have a significant effect on the number of patients with at least one Clavien ≥III complication. However, we believe that HOPE may have a beneficial effect on the quantity of complications per patient, based on its application leading to fewer severe liver graft-related complications, and to a lower risk of liver-related graft loss. The HOPE approach can be applied easily after organ transport during recipient hepatectomy. This appears fundamental for wide acceptance since concurring perfusion technologies need either perfusion at donor sites or continuous perfusion during organ transport, which are much costlier and more laborious. We conclude therefore that the post hoc findings of this trial should be further validated in future studies.

  • Vendetti ML
  • Esther Moon SJ
  • Imes CC
  • Hergenroeder A
  • Sciurba F
  • et al.
Contemp Clin Trials Commun. 2023 Feb 28;33:101097 doi: 10.1016/j.conctc.2023.101097.
BACKGROUND:

Lung transplantation is an established treatment option for persons with advanced lung disease. After transplantation, lung function typically returns to near normal levels, however exercise capacity remains low due to chronic deconditioning, limited physical function, and inactive lifestyles which undermine the intended benefits of the highly selective, resource-intensive transplant procedure. Pulmonary rehabilitation is recommended to improve fitness and activity tolerance, however due to multiple barriers, lung transplant recipients either never participate, or fail to complete, pulmonary rehabilitation programs.

PURPOSE:

To describe the design of Lung Transplant Go (LTGO), a trial modified for the remote environment based on recommendations to preserve trial integrity during COVID. The aims are to evaluate a behavioral exercise intervention to improve physical function, physical activity, and blood pressure control in lung transplant recipients conducted safely and effectively using a telerehabilitation (telerehab) platform, and to explore the role of potential mediators and moderators of the relationship between LTGO and outcomes.

METHODS:

Single-site, 2-group randomized controlled trial with lung transplant recipients randomized 1:1 to either the LTGO intervention (a 2-phased, supervised, telerehab behavioral exercise program), or to enhanced usual care (activity tracking and monthly newsletters). All study activities, including intervention delivery, recruitment, consenting, assessment, and data collection, will be performed remotely.

CONCLUSION:

If efficacious, this fully scalable and replicable telerehab intervention could be efficiently translated to reach large numbers of lung recipients to improve and sustain self-management of exercise habits by overcoming barriers to participation in existing, in-person pulmonary rehabilitation programs.

  • Mohebbi N
  • Ritter A
  • Wiegand A
  • Graf N
  • Dahdal S
  • et al.
Lancet. 2023 Feb 18;401(10376):557-567 doi: 10.1016/S0140-6736(22)02606-X.
CET Conclusion
Reviewer: Mr Simon Knight, Centre for Evidence in Transplantation, Nuffield Department of Surgical Sciences University of Oxford
Conclusion: This multicentre study from Switzerland investigated the effect of using sodium bicarbonate to correct metabolic acidosis on the graft function of stable renal transplant recipients. Recipients with a serum bicarbonate level of <22 mmol/L were randomised to oral sodium bicarbonate or placebo for 2 years. Despite adequate correction of metabolic acidosis in the treatment group, there was no difference in eGFR decline between groups, leading the authors to conclude that sodium bicarbonate supplementation to preserve GFR in renal transplant recipients is not recommended. The methodology of the study is excellent, with centralised variable block randomisation and placebo-control. A modified ITT analysis is used including all patients who were randomised and attended a baseline visit. It should be noted that the mean serum bicarbonate level in both groups at baseline was only just below the lower limit of normal (~21 mmol/L), leaving the possibility that greater benefit may be seen in patients with a more profound acidosis. However, this was not supported by prespecified subgroup analysis (albeit with more limited statistical power).
Aims: The aim of this study was to examine the effects of sodium bicarbonate treatment on graft function in renal transplant patients with metabolic acidosis.
Interventions: Participants were randomised to receive either oral sodium bicarbonate or matching placebo.
Participants: 242 kidney transplant recipients with metabolic acidosis.
Outcomes: The primary outcome was the estimated glomerular filtration rate (GFR) slope over a treatment phase of 24 months. Secondary outcomes were serum bicarbonate and pH, albuminuria, and mean daytime systolic and diastolic blood pressure.
Follow Up: 24 months
BACKGROUND:

Metabolic acidosis is common in kidney transplant recipients and is associated with declining graft function. Sodium bicarbonate treatment effectively corrects metabolic acidosis, but no prospective studies have examined its effect on graft function. Therefore, we aimed to test whether sodium bicarbonate treatment would preserve graft function and slow the progression of estimated glomerular filtration rate (GFR) decline in kidney transplant recipients.

METHODS:

The Preserve-Transplant Study was a multicentre, randomised, single-blind, placebo-controlled, phase 3 trial at three University Hospitals in Switzerland (Zurich, Bern, and Geneva), which recruited adult (aged ≥18 years) male and female long-term kidney transplant recipients if they had undergone transplantation more than 1 year ago. Key inclusion criteria were an estimated GFR between 15 mL/min per 1·73 m2 and 89 mL/min per 1·73 m2, stable allograft function in the last 6 months before study inclusion (<15% change in serum creatinine), and a serum bicarbonate of 22 mmol/L or less. We randomly assigned patients (1:1) to either oral sodium bicarbonate 1·5-4·5 g per day or matching placebo using web-based data management software. Randomisation was stratified by study centre and gender using a permuted block design to guarantee balanced allocation. We did multi-block randomisation with variable block sizes of two and four. Treatment duration was 2 years. Acid-resistant soft gelatine capsules of 500 mg sodium bicarbonate or matching 500 mg placebo capsules were given at an initial dose of 500 mg (if bodyweight was <70 kg) or 1000 mg (if bodyweight was ≥70 kg) three times daily. The primary endpoint was the estimated GFR slope over the 24-month treatment phase. The primary efficacy analyses were applied to a modified intention-to-treat population that comprised all randomly assigned participants who had a baseline visit. The safety population comprised all participants who received at least one dose of study drug. The trial is registered with ClinicalTrials.gov, NCT03102996.

FINDINGS:

Between June 12, 2017, and July 10, 2019, 1114 kidney transplant recipients with metabolic acidosis were assessed for trial eligibility. 872 patients were excluded and 242 were randomly assigned to the study groups (122 [50%] to the placebo group and 120 [50%] to the sodium bicarbonate group). After secondary exclusion of two patients, 240 patients were included in the intention-to-treat analysis. The calculated yearly estimated GFR slopes over the 2-year treatment period were a median -0·722 mL/min per 1·73 m2 (IQR -4·081 to 1·440) and mean -1·862 mL/min per 1·73 m2 (SD 6·344) per year in the placebo group versus median -1·413 mL/min per 1·73 m2 (IQR -4·503 to 1·139) and mean -1·830 mL/min per 1·73 m2 (SD 6·233) per year in the sodium bicarbonate group (Wilcoxon rank sum test p=0·51; Welch t-test p=0·97). The mean difference was 0·032 mL/min per 1·73 m2 per year (95% CI -1·644 to 1·707). There were no significant differences in estimated GFR slopes in a subgroup analysis and a sensitivity analysis confirmed the primary analysis. Although the estimated GFR slope did not show a significant difference between the treatment groups, treatment with sodium bicarbonate effectively corrected metabolic acidosis by increasing serum bicarbonate from 21·3 mmol/L (SD 2·6) to 23·0 mmol/L (2·7) and blood pH from 7·37 (SD 0·06) to 7·39 (0·04) over the 2-year treatment period. Adverse events and serious adverse events were similar in both groups. Three study participants died. In the placebo group, one (1%) patient died from acute respiratory distress syndrome due to SARS-CoV-2 and one (1%) from cardiac arrest after severe dehydration following diarrhoea with hypotension, acute kidney injury, and metabolic acidosis. In the sodium bicarbonate group, one (1%) patient had sudden cardiac death.

INTERPRETATION:

In adult kidney transplant recipients, correction of metabolic acidosis by treatment with sodium bicarbonate over 2 years did not affect the decline in estimated GFR. Thus, treatment with sodium bicarbonate should not be generally recommended to preserve estimated GFR (a surrogate marker for graft function) in kidney transplant recipients with chronic kidney disease who have metabolic acidosis.

FUNDING:

Swiss National Science Foundation.

  • Kanani T
  • Isherwood J
  • Issa E
  • Chung WY
  • Ravaioli M
  • et al.
Cureus. 2023 Feb 9;15(2):e34804 doi: 10.7759/cureus.34804.

Ex-vivo perfusion describes the extra-corporeal delivery of fluid to an organ or tissue. Although it has been widely studied in the context of organ preservation and transplantation, it has also proven to be an invaluable tool in the development of novel models for translational pre-clinical research. Here, we review the literature reporting ex-vivo human liver perfusion experiments to further understand current perfusion techniques and protocols together with their applications. A computerised search was made of Ovid, MEDLINE, and Embase using the search words "ex-vivo liver or hepatic perfusion". All relevant studies in English describing experiments using ex-vivo perfusion of human livers between 2016 and 2021, inclusive, were included. Of 21 reviewed studies, 19 used ex-vivo human liver perfusion in the context of allogeneic liver transplantation. The quality and size of the studies varied considerably. Human liver perfusion was almost exclusively limited to whole organs and "split" livers, although one study did describe the successful perfusion of tissue sections following a partial hepatectomy. This review of recent literature involving ex-vivo human liver perfusion demonstrates that the technique is not limited to whole liver perfusion. Split-liver perfusion is extremely valuable allowing one lobe to act as a control and increasing the number available for research. This review also highlights the present lack of any reports of segmental liver perfusion. The discarded donor liver is a scarce resource, and the successful use of segmental perfusion has the potential to expand the available experimental models to facilitate pre-clinical experimentation.

  • Ly M
  • Lau NS
  • McKenzie C
  • Kench JG
  • McCaughan G
  • et al.
Transplant Direct. 2023 Feb 8;9(3):e1443 doi: 10.1097/TXD.0000000000001443.
UNLABELLED:

Biliary complications are a common cause of morbidity after liver transplantation and associated with bile duct injury. To reduce injury, a bile duct flush is performed with high-viscosity preservation solution. It has been suggested that an earlier additional bile duct flush with low-viscosity preservation solution may reduce bile duct injury and biliary complications. This study aimed to investigate whether an earlier additional bile duct flush would reduce bile duct injury or biliary complications.

METHODS:

A randomized trial was conducted using 64 liver grafts from brain dead donors. The control group received a bile duct flush with University of Wisconsin (UW) solution after donor hepatectomy. The intervention group received a bile duct flush using low-viscosity Marshall solution immediately after the onset of cold ischemia and a bile duct flush with University of Wisconsin solution after donor hepatectomy. The primary outcomes were the degree of histological bile duct injury, assessed using the bile duct injury score, and biliary complications within 24 mo of transplant.

RESULTS:

Bile duct injury scores were not different between the 2 groups. Similar rates of biliary complications occurred in the intervention group (31% [n = 9]) and controls (23% [n = 8]) (P = 0.573). No difference between groups was observed for anastomotic strictures (24% versus 20%, P = 0.766) or nonanastomotic strictures (7% versus 6%, P = 1.00).

CONCLUSIONS:

This is the first randomized trial to investigate an additional bile duct flush using low-viscosity preservation solution during organ procurement. The findings from this study suggest that performing an earlier additional bile duct flush with Marshall solution does not prevent biliary complications and bile duct injury.